Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle.
نویسندگان
چکیده
An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration.
منابع مشابه
Re"evolutionary" regenerative medicine.
THE POTENTIAL TO REGENERATE DAMAGED LIMBS AND hearts seems the subject of science fiction, but newts and zebrafish do it all the time. What can scientists learn from these simple creatures? Why have mammals not retained this remarkably useful property in the course of evolution? Can an evolutionary perspective on the mechanisms used by “lowly” organisms inform the approach to human tissue regen...
متن کاملMolecular Biology Select
The central importance of the tumor suppressor Retinoblastoma protein (Rb) in cell-cycle progression makes its regulation a focal point for diverse biological processes, as evidenced by recent work described in this issue's Molecular Biology Select. These findings reveal new insight into Rb's involvement in tissue regener-ation and differentiation, as well as previously unrecognized mechanisms ...
متن کاملIn vivo proliferation of postmitotic cochlear supporting cells by acute ablation of the retinoblastoma protein in neonatal mice.
Cochlear hair cells (HCs) are mechanosensory receptors that transduce sound into electrical signals. HC damage in nonmammalian vertebrates induces surrounding supporting cells (SCs) to divide, transdifferentiate and replace lost HCs; however, such spontaneous HC regeneration does not occur in the mammalian cochlea. Here, we acutely ablate the retinoblastoma protein (Rb), a crucial cell cycle re...
متن کاملExpression of Arf Tumor Suppressor in Spermatogonia Facilitates Meiotic Progression in Male Germ Cells
The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19(Arf) is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf...
متن کاملSustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts
In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell stem cell
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2010